The aim of this work was to study sulfadiazine (SDZ) biodegradation efficiency, antibiotic resistance genes (ARGs) development and shift of microbial communities under conditions of limited methanogens activity in Microbial… Click to show full abstract
The aim of this work was to study sulfadiazine (SDZ) biodegradation efficiency, antibiotic resistance genes (ARGs) development and shift of microbial communities under conditions of limited methanogens activity in Microbial fuel cells (MFCs). The results indicated that the removal performance of SDZ was decreased with the suppression of methanogens in both MFCs and open-circuit controls. The relative abundances of ARGs were even enhanced by the inhibition of methanogens. The biodegradation mechanism of SDZ was obtained, in which SDZ was initially divided into aniline and pyrimidin-2ylsulfamic acid, then converted into small molecules. Geobacter was found as the dominant microorganism, indicating its potential to degrade SDZ in the MFCs. These findings suggest there is a trade-off between electricity production and SDZ removal and ARG development by the mean of methanogen inhibition in MFCs.
               
Click one of the above tabs to view related content.