LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biohydrogen production from co-fermentation of fallen leaves and sewage sludge.

Photo by austriannationallibrary from unsplash

The co-fermentation of fallen leaves and sewage sludge was performed for the production of hydrogen at different mixing ratios. The experimental results indicated that the optimal mixing ratio of sludge… Click to show full abstract

The co-fermentation of fallen leaves and sewage sludge was performed for the production of hydrogen at different mixing ratios. The experimental results indicated that the optimal mixing ratio of sludge to leaves was 20:80 (volatile solids (VS) basis), and the co-fermentation process showed a synergistic effect on biohydrogen production at this mixing ratio. The biohydorgen yield reached 37.8 mL/g-VSadded at the mixing ratio of 20:80, which was higher compared to the mono-fermentation of sludge (10.3 mL/g-VSadded) or the leaves (30.5 mL/g-VSadded). The VS removal was also highest (15.7%) at the mixing ratio of 20:80, which was higher compared to sludge mono-fermentation (6.2%) or leaves mono-fermentation (12.8%). Meanwhile, the co-fermentation process enhanced the biohydrogen production rate and led to a more efficient fermentation pathway. Microbial community analysis showed that the co-fermentation system enriched much more Clostridium, Bacillus and Rummeliibacillus genera, which was responsible for the synergistic effect on biohydrogen production.

Keywords: sludge; biohydrogen production; fermentation; fermentation fallen

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.