LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Statistical and sequential (fill-and-draw) approach to enhance rhamnolipid production using industrial lignocellulosic hydrolysate C6 stream from Achromobacter sp. (PS1).

Photo by worldsbetweenlines from unsplash

Statistical optimization using industrial rice-straw hydrolysate (C6 stream) containing 5.0% total sugars was carried out for enhancing the rhamnolipid production from Achromobacter sp. (PS1) with subsequent adoption of a sequential… Click to show full abstract

Statistical optimization using industrial rice-straw hydrolysate (C6 stream) containing 5.0% total sugars was carried out for enhancing the rhamnolipid production from Achromobacter sp. (PS1) with subsequent adoption of a sequential fermentation approach with fill-and-draw operation for further increment. The interactive effects of six influential variables obtained from one-factor-at-a-time approach as sodium nitrate, yeast extract, ferrous sulphate, phosphate concentrations and agitation in presence of lignocellulosic hydrolyzed sugars as a basal medium using central composite design revealed the experimental rhamnolipid yield of 5.46 g/L at optimum conditions of total sugars 40 g/L (w/v), sodium nitrate 6.0 (g/L), yeast extract 2 (g/L), ferrous sulphate 0.2 (mg/L) and phosphate 1000 mM at 100 rpm at 30 °C in 8 days. The sequential approach further resulted in an overall yield of 19.35 g/L of rhamnolpid in five sequential-cycles with an increase of 258% over the batch process on account of nutrients replenishment and dilution of toxic by-products.

Keywords: using industrial; rhamnolipid production; fill draw; hydrolysate stream; approach; achromobacter ps1

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.