LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuous conversion of CO2/H2 with Clostridium aceticum in biofilm reactors.

Photo by elevatebeer from unsplash

A lab-scale stirred-tank bioreactor was reversibly retrofitted to a packed-bed and a trickle-bed biofilm reactor to study and compare the conversion of CO2/H2 with immobilised Clostridiumaceticum. The biofilm reactors were… Click to show full abstract

A lab-scale stirred-tank bioreactor was reversibly retrofitted to a packed-bed and a trickle-bed biofilm reactor to study and compare the conversion of CO2/H2 with immobilised Clostridiumaceticum. The biofilm reactors were characterised and their functionality confirmed. Up to 8.6 g of C. aceticum were immobilised onto 300 g sintered ceramic carrier material, proving biofilm formation to be a robust means for cell retention of C. aceticum. Continuous CO2/H2-fermentation studies were performed with both biofilm reactor configurations as function of dilution rates, partial gas pressures and gas flow rates. The experiments showed that in the packed-bed biofilm reactor, the acetate space-time yield was independent of the dilution rate, because of low H2 gas-liquid mass transfer rates (≤17 mmol H2 L-1 h-1). The continuous operation of the trickle-bed biofilm reactor increased the gas-liquid mass transfer rates to up to 56 mmol H2 L-1 h-1. Consequently, the acetate space-time yield of up to 14 mmol acetate L-1 h-1 was improved 3-fold at hydrogen conversions of up to 96%.

Keywords: biofilm reactors; co2; biofilm reactor; conversion co2; biofilm

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.