LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Honeycomb-like magnetic cornstalk for Cr(VI) removal and ammonium release.

Photo by jeztimms from unsplash

In this work, cornstalk (CS) was irradiated by high energy electron beam to obtain honeycomb-like porous CS (PCS). The PCS was loaded with ammonium sulfite (AS) and then coated by… Click to show full abstract

In this work, cornstalk (CS) was irradiated by high energy electron beam to obtain honeycomb-like porous CS (PCS). The PCS was loaded with ammonium sulfite (AS) and then coated by polyvinyl alcohol (PVA)-Fe3O4 to obtain PCS-AS@PVA-Fe3O4. The PCS-AS@PVA-Fe3O4 could reduce hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) by SO32-, then the Cr(III) combined with PCS-AS@PVA-Fe3O4 through hydrogen bonds. The resulting PCS-AS@PVA-Fe3O4/Cr with a high magnetism could be conveniently separated from water via a magnet. PCS-AS@PVA-Fe3O4/Cr showed a high performance on controlling Cr(VI) migration in soil and uptake by plant. Meanwhile, ammonium could be released from PCS-AS@PVA-Fe3O4, favoring plant growth. Therefore, this work not only provides a promising and low-cost approach to remove Cr(VI) and promote plant growth simultaneously, but also provides a new route for CS recycling, which might have a potential application value.

Keywords: cornstalk; honeycomb like; pva fe3o4; ammonium; pcs pva

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.