LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced biogas production and in situ ammonia recovery from food waste using a gas-membrane absorption anaerobic reactor.

Photo from wikipedia

A novel GAs-Membrane Absorption anaerobic Reactor (GAMAR) was developed by combining gas-membrane absorption system with anaerobic digestion. A gas-permeable expanded polytetrafluoroethylene (ePTFE) membrane was submerged in the anaerobic reactor. Free… Click to show full abstract

A novel GAs-Membrane Absorption anaerobic Reactor (GAMAR) was developed by combining gas-membrane absorption system with anaerobic digestion. A gas-permeable expanded polytetrafluoroethylene (ePTFE) membrane was submerged in the anaerobic reactor. Free ammonia could transfer through the gas-permeable membrane and be recovered by acidic solution. The free ammonia concentration was lower than 40 mgN L-1 in GAMAR, which alleviated ammonia inhibition. Meanwhile free ammonia concentration up 70 mgN L-1 in the reference reactor inhibited methanogens and led to unstable operation. The volumetric biogas production rate of GAMAR was 2.83 m3 m-3 d-1, and 58% higher than the reference reactor. Long term use of membrane led to membrane fouling and hydrophobicity loss. The contact angle of membrane decreased from 105.9 ± 1.2° to 97.6 ± 6.3° after 43 d. The abundance of methanogens in GAMAR was 1.8-2.1 times higher than that in the reference reactor, which was in accordance with the higher biogas production rate in GAMAR.

Keywords: membrane absorption; gas membrane; reactor; membrane; anaerobic reactor

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.