The study was to explore the feasibility of polyurethane (PU), Fe3O4@PU, powdered activated carbon (PAC), Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar as biological carriers in strengthening anaerobic degradation of quinoline, pyridine, and… Click to show full abstract
The study was to explore the feasibility of polyurethane (PU), Fe3O4@PU, powdered activated carbon (PAC), Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar as biological carriers in strengthening anaerobic degradation of quinoline, pyridine, and indole. When the concentrations of pollutants were 25 mg/L and 50 mg/L, reactors based on PAC and Fe(OH)3@PAC had higher degradation ratios than the other reactors. However, when the concentrations of pollutants were 75 mg/L and 100 mg/L, with the addition of PU and Fe3O4@PU, reactors began to show their superiority in the degradation of the selected NHCs. Among these, the reactor based on Fe3O4@PU had the optimal degradation ratio on quinoline, pyridine, and indole. PU, PAC, Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar benefited the enrichment of Acinetobacter, Comamonas, Levilinea, Longilinea, and Desulfomicrobium. The reactor with the carrier of Fe3O4@PU had some specificity, which benefited the enrichment of Zoogloea, Thiobacillus, Anaeromyxobacter, Sphingobium, Terrimonas, Parcubacteria genera incertae sedis, Bdellovibrio, Rhizobium, and Acidovorax.
               
Click one of the above tabs to view related content.