LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production of polyhydroxyalkanoates and enrichment of associated microbes in bioreactors fed with rice winery wastewater at various organic loading rates.

Photo from archive.org

This study aimed to explore the production of polyhydroxyalkanoates (PHA) and selection of PHA-accumulating microorganisms in bioreactors fed with rice winery wastewater at various organic loading rates (OLRs). The substrate… Click to show full abstract

This study aimed to explore the production of polyhydroxyalkanoates (PHA) and selection of PHA-accumulating microorganisms in bioreactors fed with rice winery wastewater at various organic loading rates (OLRs). The substrate utilization, sludge properties, PHA synthesis and microbial community structure of three sequencing batch reactors were monitored. The results show the highest PHA yield (0.23 g/g) was achieved in one of the three reactors with an OLR of 2.4 g COD/L/d, in which Zoogloea was the most dominant PHA-accumulating microorganism. To quantify the PHA production and track the population changing profiles of the PHA-accumulating microorganisms in the long-term reactor operation, the Activated Sludge Model No. 3 was modified with two different heterotrophic microorganisms responding differently with the same substrate. The modeling results indicate that a moderate OLR (>2.4 gCOD/L/d) was beneficial for PHA production. The results are useful for understanding the PHA production from industrial wastewaters and selection of PHA-accumulating microorganisms.

Keywords: production; pha; pha accumulating; production polyhydroxyalkanoates; fed rice; bioreactors fed

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.