LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon sequestration pathway of inorganic carbon in partial nitrification sludge.

Photo from wikipedia

Inorganic carbon is an important carbon source of autotrophic bacteria, e.g., ammonia-oxidizing bacteria. Ammonia-oxidizing bacteria are chemoautotrophic bacteria with carbon sequestration capacity. Experiments were performed on partial nitrification sludge with… Click to show full abstract

Inorganic carbon is an important carbon source of autotrophic bacteria, e.g., ammonia-oxidizing bacteria. Ammonia-oxidizing bacteria are chemoautotrophic bacteria with carbon sequestration capacity. Experiments were performed on partial nitrification sludge with different influent matrices, and optimal experimental operational conditions were established. The carbon fixation pathway of ammonia-oxidizing sludge was determined via 13C isotope tracers and qPCR. The denitrification effect was better when the NH4+-N, HCO3-, Ca2+, Mg2+, and microbial accelerant concentrations were 15, 250, 113, 100 and 1 mL/L, respectively. The nitrite accumulation rate reached 96.95%. 13C isotope tracing showed that 13C abundance in sludge increased significantly. The results showed that IC added into the influent participated in the carbon metabolism of microorganisms. The functional gene cbbL, which follows the Calvin cycle carbon sequestration pathway, was identified in the ammonia-oxidizing bacteria, and the effect of influent NH4+-N on the gene abundance was greater than that of other substrates.

Keywords: carbon; carbon sequestration; sludge; inorganic carbon; ammonia oxidizing

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.