The aim of this study was to determine a compatible method for co-production of fucoxanthin and eicosapentaenoic acid of diatom Nitzschia laevis by mixotrophic and heterotrophic cultivation modes in view… Click to show full abstract
The aim of this study was to determine a compatible method for co-production of fucoxanthin and eicosapentaenoic acid of diatom Nitzschia laevis by mixotrophic and heterotrophic cultivation modes in view of cell growth, targeting products' contents, photosynthesis-related characteristics and carbon partitioning. The results showed that mixotrophic mode enhanced fucoxanthin and eicosapentaenoic acid yields by increasing their precursors of pyruvate and acetyl-CoA at the expense of starch. The increase of chlorophylls and glyceraldehyde 3-phosphate indicated the development of Calvin cycle and carbon repartitioning in mixotrophic mode. Consequently, microalgal cells in mixotrophic mode achieved much higher fucoxanthin (60.12%) and eicosapentaenoic acid (50.67%) contents, and lower starch content (30.2%) compared with heterotrophic mode. Furthermore, fucoxanthin content was positively correlated with eicosapentaenoic acid content (adjusted R2 = 0.96). Taken together, these results showed that the mixotrophic mode could be a promising approach for the co-production of fucoxanthin and eicosapentaenoic acid by Nitzschia laevis.
               
Click one of the above tabs to view related content.