LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution.

Photo from wikipedia

A novel wasted sludge-based Biochar modified by Chitosan and Fe/S (BCFe/S) was prepared for tetracycline (TC) removal from water. To investigate the similarities and differences in adsorption behaviors between Biochar… Click to show full abstract

A novel wasted sludge-based Biochar modified by Chitosan and Fe/S (BCFe/S) was prepared for tetracycline (TC) removal from water. To investigate the similarities and differences in adsorption behaviors between Biochar and BCFe/S, characterization, kinetics, isotherms and thermodynamics were discussed. The studies on site energy distribution (SED) were also presented. The results showed that the maximum TC adsorption amount was 51.78 mg/g for Biochar, while it was 183.01 mg/g for BCFe/S-4. Meanwhile, electrostatic attraction, π-π stacking, pore filling, silicate bonding and hydrogen bonding were the main adsorption mechanisms for TC removal by Biochar. Besides above mechanisms, chelating and ion exchange were also accounted for adsorption mechanisms for TC uptake by BCFe/S-4. Moreover, SED results revealed that the surface of Biochar was more homogeneous while the surface of BCFe/S-4 was more heterogeneous at higher temperature. Findings of this work could offer valuable information in designing adsorbents and investigating adsorption mechanisms.

Keywords: energy distribution; adsorption; site energy; studies site; biochar modified; modified chitosan

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.