LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Individual and combined effects of magnetite addition and external voltage application on anaerobic digestion of dairy wastewater.

Photo from wikipedia

Direct interspecies electron transfer (DIET) between exoelectrogenic fatty acid oxidizers and electrotrophic methanogens plays an important role in keeping the overall anaerobic digestion (AD) process well-balanced. This study examined the… Click to show full abstract

Direct interspecies electron transfer (DIET) between exoelectrogenic fatty acid oxidizers and electrotrophic methanogens plays an important role in keeping the overall anaerobic digestion (AD) process well-balanced. This study examined the individual and combined effects of two different DIET-promoting strategies, i.e., magnetite addition (20 mM Fe) and external voltage application (0.6 V), in continuous digesters treating dairy wastewater. Although the strategies were both effective in enhancing the process performance and stability, adding magnetite had a much greater stimulatory effect. External voltage contributed little to the methane yield, and the digester with magnetite addition alone achieved stable performance, comparable to that of the digester where both strategies were combined, at short hydraulic retention times (down to 7.5 days). Diverse (putative) electroactive microorganisms were significantly enriched under DIET-promoting conditions, particularly with magnetite addition. The overall results suggest that magnetite addition could effectively enhance AD performance and stability by promoting DIET-based electro-syntrophic microbial interactions.

Keywords: magnetite addition; addition; individual combined; external voltage; anaerobic digestion

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.