LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

γ-Aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress.

Photo from wikipedia

This study explored the effects of γ-aminobutyric acid (GABA) on the production of biomass and lipids and on the uptake of Cd2+ by microalgae under cadmium (Cd) stress. Compared with… Click to show full abstract

This study explored the effects of γ-aminobutyric acid (GABA) on the production of biomass and lipids and on the uptake of Cd2+ by microalgae under cadmium (Cd) stress. Compared with the control and Cd stress alone, 2.5 mM GABA increased the maximum lipid content (55.37%) by 49.37% and 9.42%, respectively. GABA application resulted in increased contents of protein and glutathione (GSH) and in upregulated activity of α-amylase but decreased contents of starch, reactive oxygen species (ROS) and Cd2+, with no effect on subsequent biodiesel quality. Additional analysis of GABA further indicated that increased cellular GABA contents could promote lipid synthesis and reduce Cd accumulation by regulating the expression levels of lipogenesis genes, ROS signalling and mineral nutrient uptake under Cd stress. Collectively, these findings show that GABA not only increases lipid production in microalgae but also is involved in the mechanisms by which microalgae respond to Cd stress.

Keywords: production; acid gaba; stress; gaba; cadmium; aminobutyric acid

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.