LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessing thermal behaviours of cellulose and poly(methyl methacrylate) during co-pyrolysis based on an unified thermoanalytical study.

Photo from wikipedia

The objective of this study was to evaluate pyrolysis and co-pyrolysis behavior of cellulose and poly(methyl methacrylate) (PMMA) and examine the kinetics of the processes by using thermogravimetric analysis (TGA)… Click to show full abstract

The objective of this study was to evaluate pyrolysis and co-pyrolysis behavior of cellulose and poly(methyl methacrylate) (PMMA) and examine the kinetics of the processes by using thermogravimetric analysis (TGA) coupled with FT-IR spectrometry. For this purpose, non-isothermal experiments were carried out using different heating rates and three prominent iso-conversional methods were used to obtain kinetic parameters at various extents of conversions from 0.1 to 0.9. Blending PMMA with cellulose had a marked effect on the process. The results of co-pyrolysis using a blending ratio of 50 wt% PMMA indicated that the highest rate of pyrolytic transformation was achieved at a conversion degree of 0.5 while activation energy ranged from 188.1 to 364.3 kJ/mol. The most intensive gas release during cellulose pyrolysis was CO2. Co-pyrolysis was more complicated than that of pyrolysis of cellulose and PMMA due to depolymerization and radical interactions.

Keywords: cellulose poly; pyrolysis; methyl methacrylate; study; poly methyl

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.