The objective of this study was to evaluate pyrolysis and co-pyrolysis behavior of cellulose and poly(methyl methacrylate) (PMMA) and examine the kinetics of the processes by using thermogravimetric analysis (TGA)… Click to show full abstract
The objective of this study was to evaluate pyrolysis and co-pyrolysis behavior of cellulose and poly(methyl methacrylate) (PMMA) and examine the kinetics of the processes by using thermogravimetric analysis (TGA) coupled with FT-IR spectrometry. For this purpose, non-isothermal experiments were carried out using different heating rates and three prominent iso-conversional methods were used to obtain kinetic parameters at various extents of conversions from 0.1 to 0.9. Blending PMMA with cellulose had a marked effect on the process. The results of co-pyrolysis using a blending ratio of 50 wt% PMMA indicated that the highest rate of pyrolytic transformation was achieved at a conversion degree of 0.5 while activation energy ranged from 188.1 to 364.3 kJ/mol. The most intensive gas release during cellulose pyrolysis was CO2. Co-pyrolysis was more complicated than that of pyrolysis of cellulose and PMMA due to depolymerization and radical interactions.
               
Click one of the above tabs to view related content.