LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electron storage and resupply modes during sulfur cycle enhanced nitrogen removal stability in electrochemically assisted constructed wetlands under low temperature.

Photo from wikipedia

In this work, an electrochemically assisted vertical flow constructed wetland (E-VFCW) achieved efficient PO43--P (92.9-96.6%), NO3--N (50.8-91.8%) and TN (38.8-73.1%) removal from synthetic sewage effluent within 1-12 h at 12 °C. Abiotic… Click to show full abstract

In this work, an electrochemically assisted vertical flow constructed wetland (E-VFCW) achieved efficient PO43--P (92.9-96.6%), NO3--N (50.8-91.8%) and TN (38.8-73.1%) removal from synthetic sewage effluent within 1-12 h at 12 °C. Abiotic reduction, Fe(II)-, S- and H2-dependent denitrification, as well as coupling of fermentation, acetogenesis and heterotrophic denitrification might facilitate NO3--N removal in the E-VFCW. Particularly, electron resupply for NO3--N reduction by the in-situ deposited FeS, FeS2 and S0 in the E-VFCW would occur during electron supply-demand disequilibrium situations (e.g., lower HRT or temperature). Stoichiometric results suggested that 21.7-278.7 mmol e- d-1 from the in-situ deposited S contributed to NO3--N reduction under HRT of 1-6 h at 12 °C, which improved the resilience capabilities of the E-VFCW to temperature and nitrogen loads fluctuations. Overall, this work provides new insights into the modes of S cycle mediating NO3--N conversions in the E-VFCW under low temperature.

Keywords: low temperature; temperature; removal; cycle; electron storage; electrochemically assisted

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.