LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of nickel/biochar composite from pyrolysis of Microcystis aeruginosa and its practical use for syngas production.

Photo by chuckcollingwood from unsplash

This study proposes a sustainable waste-to-energy/biochar platform using a toxic microalgal biomass waste. In particular, CO2-feeding pyrolysis of Microcystis aeruginosa (M. aeruginosa) waste was investigated, focusing on the analysis of… Click to show full abstract

This study proposes a sustainable waste-to-energy/biochar platform using a toxic microalgal biomass waste. In particular, CO2-feeding pyrolysis of Microcystis aeruginosa (M. aeruginosa) waste was investigated, focusing on the analysis of gaseous pyrolysates and properties of biochar with a construction of mass balance. Also, the catalytic capability of biochar produced from M. aeruginosa was explored to reinforce the mechanistic impact of CO2 on the pyrolysis process within the overall process level. Ni impregnated biochar composite was further synthesized and used as a catalyst to promote syngas formation in the CO2-feeding pyrolysis process of M. aeruginosa.

Keywords: pyrolysis; biochar; microcystis aeruginosa; pyrolysis microcystis; biochar composite

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.