LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method.

Photo by noaa from unsplash

A marine green microalga, Tetraselmis sp., has been studied for the production of biomass and lipids in seawater culture. Since carbohydrate and lipid biosynthesis are competitive metabolic pathways, we attempted… Click to show full abstract

A marine green microalga, Tetraselmis sp., has been studied for the production of biomass and lipids in seawater culture. Since carbohydrate and lipid biosynthesis are competitive metabolic pathways, we attempted to increase lipid synthesis in Tetraselmis by inhibiting carbohydrate synthesis. The main regulatory enzyme in the starch synthesis pathway is ADP-glucose pyrophosphorylase (AGP). AGP loss-of-function mutants were developed using the CRISPR-Cas9 ribonucleoprotein (RNP) delivery system. AGP mutants showed a slight decrease in growth. However, the lipid content in two AGP mutants was significantly enhanced by 2.7 and 3.1 fold (21.1% and 24.1% of DCW), respectively, compared to that in the wild type (7.68% of DCW) under nitrogen starvation. This study is an example of metabolic engineering by genetic editing using the CRISPR-Cas9 RNP method in marine green microalgae. Consequently, starchless Tetraselmis mutants might be considered potential producers of lipids in seawater cultures.

Keywords: agp; marine; crispr cas9; microalga tetraselmis; tetraselmis

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.