LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using highly recyclable sodium caseinate to enhance lignocellulosic hydrolysis and cellulase recovery.

Photo by craniax from unsplash

Most additives that capable of enhancing enzymatic hydrolysis of lignocellulose are petroleum-based, which are not easy to recycle with poor biodegradability. In this work, highly recyclable and biodegradable sodium caseinate… Click to show full abstract

Most additives that capable of enhancing enzymatic hydrolysis of lignocellulose are petroleum-based, which are not easy to recycle with poor biodegradability. In this work, highly recyclable and biodegradable sodium caseinate (SC) was used to enhance lignocellulosic hydrolysis with improved cellulase recyclability. When the pH decreased from 5.5 to 4.8, more than 96% SC could be precipitated from the solution and recovered. Adding SC increased enzymatic digestibility of dilute acid pretreated eucalyptus (Eu-DA) from 39.5% to 78.2% under Eu-DA loading of 10 wt% and pH = 5.5, and increase cellulase content in 72 h hydrolysate from only 15.2% of the original to 60.0%, which facilitated the recovery of cellulases through re-adsorption by fresh substrates. With multiple cycles of re-adsorption, application of SC not only increased the sugar yield of Eu-DA by 95.5%, but also reduced cellulase loading by 40%.

Keywords: sodium caseinate; enhance lignocellulosic; lignocellulosic hydrolysis; hydrolysis; cellulase; highly recyclable

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.