LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced anaerobic fermentation of waste activated sludge by NaCl assistant hydrolysis strategy: Improved bio-production of short-chain fatty acids and feasibility of NaCl reuse.

Photo from wikipedia

This study developed an economical approach for enhancing short-chain fatty acids (SCFAs) production from waste activated sludge (WAS) by NaCl assistant anaerobic fermentation. With NaCl addition at 20 g/L, sludge disintegration… Click to show full abstract

This study developed an economical approach for enhancing short-chain fatty acids (SCFAs) production from waste activated sludge (WAS) by NaCl assistant anaerobic fermentation. With NaCl addition at 20 g/L, sludge disintegration with extracellular polymeric substance (EPS) disruption and cell lysis were induced owing to the attack of osmotic pressure, which facilitated WAS solubilization with release of biodegradable organic matters. The SCOD sharply increased to 4092 mg/L (SCOD/TCOD = 23.9%) after 2-day hydrolysis, against 1462 mg/L in the control. After 4-day anaerobic fermentation, considerable SCFAs production of 288.2 mg COD/g VSS was achievable. More than 60% of the SCFAs was composed of acetic and propionic acids. The feasibility of bio-electrogenesis in microbial fuel cell (MFC) utilizing fermentative liquid was assessed. As such, the produced SCFAs could be consumed with energy recovery, thereby the used NaCl was reusable, which created environmental and economic benefits, e.g. reduced NaCl consumption and cost, negligible residual NaCl.

Keywords: production; nacl; short chain; sludge; anaerobic fermentation

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.