LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum.

Photo from wikipedia

An efficient biomass and high-value bioactive substances production strategy was developed for unicellular microalgae Porphyridium purpureum. We studied the optimal culture method and metabolites accumulation under different C/N conditions, and… Click to show full abstract

An efficient biomass and high-value bioactive substances production strategy was developed for unicellular microalgae Porphyridium purpureum. We studied the optimal culture method and metabolites accumulation under different C/N conditions, and further proposed methods to increase the yield under high C/N ratio. The highest biomass reached 16.24 g/L with ASW medium by mixotrophy. High C/N ratio and mediate C/N can significantly promote the synthesis and secretion of polysaccharides, as well as the accumulation of ω-6 PUFAs; however, inhibit the growth, resulting in lower yield. With the significant increase of C/N ratio, protein degradation was accelerated, providing sufficient nitrogen source for efficient accumulation of carbohydrates (1.66 g/L EPS) and PUFAs (231.24 mg/L ARA). Finally, we reduced the growth inhibition, shortened the culture cycle, and doubled the final biomass to 9.34 g/L under nitrogen deficiency condition. Our exploitation of a cost-effective and feasible culture method for red algae is particularly significant.

Keywords: nitrogen; microalgae porphyridium; bioactive substances; high value; ratio; value bioactive

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.