Ammonia and nitrite in aquaculture recirculating seawater need to be strictly controlled to avoid deleterious effects on aquatic organisms. However, traditional biological approach can hardly meet the standard due to… Click to show full abstract
Ammonia and nitrite in aquaculture recirculating seawater need to be strictly controlled to avoid deleterious effects on aquatic organisms. However, traditional biological approach can hardly meet the standard due to the short hydraulic retention time (HRT) and nitrite accumulation. A Membrane Electro-Bioreactor (MEBR) was developed for ammonia removal enhancement and in-situ electrochemical membrane fouling mitigation. The fouling mechanism was first found to proceed via the standard filtration model. The flux decrease was mainly caused by an internal pore clogging phenomenon. Membrane fouling resistance was enhanced by increasing anode potential from 0 to 1.4 V vs. SCE (Saturated Calomel Electrode). The ammonia removal rate in the MEBR was above 95% (HRT: 2 h, after day-13) and membrane fouling was mitigated that operation duration was extended by 71.4%. Higher total proportion of Proteobacteria, Bacteroidetes, Planctomycetes and Actinobacteria was obtained in the MEBR, suggesting higher nitrification and nitrogen removal potentials.
               
Click one of the above tabs to view related content.