LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced bioethanol production using atmospheric cold plasma-assisted detoxification of sugarcane bagasse hydrolysate.

Photo from wikipedia

The current study used acid hydrolysis of lignocellulosic materials to obtain fermentable sugar for bioethanol production. However, toxic compounds that inhibit fermentation are also produced during the process, which reduces… Click to show full abstract

The current study used acid hydrolysis of lignocellulosic materials to obtain fermentable sugar for bioethanol production. However, toxic compounds that inhibit fermentation are also produced during the process, which reduces the bioethanol productivity. In this study, atmospheric cold plasma (ACP) was adopted to degrade the toxic compounds within sulfuric acid-hydrolyzed sugarcane bagasse. After ACP treatment, significant decreases in toxic compounds (31% of the formic acid, 45% of the acetic acid, 80% of the hydroxymethylfurfural, and 100% of the furfural) were observed. The toxicity of the hydrolysate was low enough for bioethanol production using Kluyveromyces marxianus. After adopting optimal ACP conditions (200 W power for 25 min), the bioethanol productivity improved from 0.25 to 0.65 g/L/h, which means that ACP could effectively degrade toxic compounds within the hydrolysate, thereby enhancing bioethanol production. Various nitrogen substitute was coordinated with detoxified hydrolysate, and chicken meal group presented the highest bioethanol productivity (0.45 g/L/h).

Keywords: toxic compounds; production; cold plasma; hydrolysate; bioethanol production; atmospheric cold

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.