LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Response of process performance and microbial community to ammonia stress in series batch experiments.

Photo from wikipedia

To further clarify the key stage and microorganisms responsible for ammonia inhibition instability, three sequential batch experiments were conducted with various ammonia concentrations and different exposure modes. Acetate metabolism was… Click to show full abstract

To further clarify the key stage and microorganisms responsible for ammonia inhibition instability, three sequential batch experiments were conducted with various ammonia concentrations and different exposure modes. Acetate metabolism was most sensitive to ammonia, however, after continuous ammonia exposure, acetate metabolism was well restored by a shift in dominant microorganisms. In contrast, the metabolism of longer-chain volatile fatty acids (LCVFAs, C3-C5) was only inhibited under a high ammonia concentration (≥6000 mg/L), however, once inhibited, continuous exposure neither restored the abundance of functional microbes nor induced new microorganisms to perform metabolic functions. Therefore, LCVFA metabolism was the key stage responsible for process instability under ammonia stress. Moreover, the deterioration of LCVFA metabolism was caused by the inhibition of syntrophic acetogenic bacteria (SAB) induced by total ammonia nitrogen, rather than the feedback inhibition from methanogenesis. That is, SAB were the key microorganisms involved in process instability.

Keywords: batch experiments; metabolism; ammonia; process; ammonia stress

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.