Wastewater is the major source of bisphenol A (BPA) in the environment, however, the results regarding main mechanisms of BPA biodegradation in wastewater treatment systems are divergent. The effect of… Click to show full abstract
Wastewater is the major source of bisphenol A (BPA) in the environment, however, the results regarding main mechanisms of BPA biodegradation in wastewater treatment systems are divergent. The effect of BPA concentration in wastewater (0, 2, 6, 12 mg BPA/L) on respirometric activity and expression of selected genes in aerobic granules was examined. A real-time protocol for analysis of direct BPA-degrader activity targeting gene coding for ferredoxin was developed. At 2 mg BPA/L, respirometric activity of granules was the highest, which favored the fastest pollutant removal, and BPA-degraders were active at the beginning of the reactor cycle and no by-products of BPA degradation were detected. At 6 and 12 mg BPA/L, the activity of BPA-degraders was much higher, peaking after feeding and again when a BPA metabolite (3-(benzyloxy)benzoic acid) appeared in the reactor. The upregulation of gene coding for ammonia monooxygenase indicated that co-metabolism occurred mostly at 12 mg BPA/L.
               
Click one of the above tabs to view related content.