LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance and bacterial communities in unsaturated and saturated zones of a vertical-flow constructed wetland with continuous-feed.

Photo from wikipedia

In this study, a partially-saturated vertical-flow constructed wetland (VFCW) with continuous-feed was operated to investigate nutrients transformation and possible pathways in unsaturated and saturated zones. Effect of temperature on nutrients… Click to show full abstract

In this study, a partially-saturated vertical-flow constructed wetland (VFCW) with continuous-feed was operated to investigate nutrients transformation and possible pathways in unsaturated and saturated zones. Effect of temperature on nutrients removal and microbial community was also evaluated. The variation of temperature barely affected removal of NH4+-N and COD, achieving removal efficiencies of 99.5-100.0% and 96.8-100.0% at effluent temperature of 14.9-27.7 °C. The removal of COD, NH4+-N, total inorganic nitrogen (TIN) and total phosphorus mainly occurred in unsaturated zone, achieving much higher removal rates than saturated zone. Nitrification process in the VFCW was associated with autotrophic/heterotrophic ammonia oxidizing bacteria and nitrite oxidizing bacteria. Denitrification process relied on both autotrophic and heterotrophic denitrifiers. Anaerobic ammonium oxidizing bacteria was also detected, contributing to TIN removal. All of the groups for nutrients removal exhibited higher abundance in unsaturated zone. Diverse pathways co-existed for nitrogen removal, while the main metabolic pathways were different along the depth.

Keywords: unsaturated saturated; vertical flow; constructed wetland; flow constructed; saturated zones; continuous feed

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.