LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Process optimization of fucoxanthin production with Tisochrysis lutea.

To optimize fucoxanthin production in Tisochrysis lutea, the effect of different process parameters on fucoxanthin productivity (Pfx) were evaluated using batch and continuous experiments. In batch, the highest Pfx was… Click to show full abstract

To optimize fucoxanthin production in Tisochrysis lutea, the effect of different process parameters on fucoxanthin productivity (Pfx) were evaluated using batch and continuous experiments. In batch, the highest Pfx was found at 30 °C and 300 μmol m-2 s-1, allowing to design continuous experiments to optimize the dilution rate. The highest ever reported Pfx (9.43-9.81 mg L-1 d-1) was achieved at dilution rates of 0.53 and 0.80 d-1. Irradiance was varied (50-500 μmol m-2 s-1) to result in a range of absorbed light between 2.23 and 25.80 mol m-2 d-1 at a fixed dilution rate (0.53 d-1). These experiments validated the hypothesis that light absorbed can be used to predict fucoxanthin content, resulting in 2.23 mol m-2 d-1 triggering the highest fucoxanthin content (16.39 mg/g). The highest Pfx was found with 18.38 mol m-2 d-1. These results can be used to achieve high Pfx or fucoxanthin content during cultivation of Tisochrysis lutea.

Keywords: production tisochrysis; process; fucoxanthin production; tisochrysis lutea; tisochrysis

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.