LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibition mitigation of methanogenesis processes by conductive materials: A critical review.

Photo from wikipedia

Methanogenesis can be promoted by the addition of conductive materials. Although stimulating effects of conductive materials on methane (CH4) production has been extensively reported, the crucial roles on recovering methanogenic… Click to show full abstract

Methanogenesis can be promoted by the addition of conductive materials. Although stimulating effects of conductive materials on methane (CH4) production has been extensively reported, the crucial roles on recovering methanogenic activities under inhibitory conditions have not been systematically discussed. This critical review presents the current findings on the effects of conductive materials in methanogenic systems under volatile fatty acids (VFAs), ammonia, sulfate, and nano-cytotoxicity stressed conditions. Conductive materials induce fast VFAs degradation, avoiding VFAs accumulation during anaerobic digestion. Under high ammonia concentrations, conductive materials may ensure sufficient energy conservation for methanogens to maintain intracellular pH and proton balance. When encountering the competition of sulfate-reducing bacteria, conductive materials can benefit electron competitive capability of methanogens, recovering CH4 production activity. Conductive nanomaterials stimulate the excretion of extracellular polymeric substances, which can prevent cells from nano-cytotoxicity. Future perspectives about unraveling mitigation mechanisms induced by conductive materials in methanogenesis processes are further discussed.

Keywords: critical review; methanogenesis processes; mitigation; methanogenesis; conductive materials

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.