LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of microbial communities during anaerobic digestion of kitchen waste: Effect of substrate sources and temperatures.

Photo from wikipedia

In this study, batch experiments were conducted to compare the effect of temperature and substrate source on microbial communities in the anaerobic digestion of kitchen waste. The results showed that… Click to show full abstract

In this study, batch experiments were conducted to compare the effect of temperature and substrate source on microbial communities in the anaerobic digestion of kitchen waste. The results showed that the microbial communities of anaerobic digestion were not sensitive to varied sources of waste, but shifted with the change in operating temperatures. In the reactors operated at mesophilic conditions, Levilinea, Syntrophomonas, Methanothrix, and Methanosphaerula, etc. were the dominant microbes during the process. While in thermophilic reactors, Levilinea, Ornatilinea, Methanosphaerula and Methanomassiliicoccus, etc. prevailed. Meanwhile, an enrichment in Coprothermobacter, Defluviitoga, Defluviitalea, Tepidimicrobium, Lutispora and Fonticella were observed as the temperature changed from mesophilic to thermophilic, suggesting these genera could be selectively enriched at thermophilic conditions. The results provided fundamental understanding of the microbiology that could support the scale up of food waste anaerobic digestion.

Keywords: waste; digestion; digestion kitchen; communities anaerobic; anaerobic digestion; microbial communities

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.