The proton pump is a convincing mechanism for ammonia inhibition in anaerobic digestion, which explained how the ammonia accumulated intercellularly due to diffusion of free ammonia. Proton pump inhibitor (PPI)… Click to show full abstract
The proton pump is a convincing mechanism for ammonia inhibition in anaerobic digestion, which explained how the ammonia accumulated intercellularly due to diffusion of free ammonia. Proton pump inhibitor (PPI) was dosed for mitigating the accumulation in anaerobic digestion with ammonia stress, with respect to kinetics. Results show PPI inhibited β-oxidation of fatty acids by targeting ATPase in anaerobic digestion with ammonia stress. Alternatively, PPI stimulated syntrophic acetate oxidization. Random forest located key genera as syntrophic consortia. Methane increased 18.72 ± 7.39% with 20 mg/L PPI at the first peak, consistent with microbial results. The deterministic Gompertz kinetics and stochastic Gaussian processes contributed 97.63 ± 8.93% and 2.37 ± 8.93% in accumulated methane production, respectively. Thus, the use of PPI for anaerobic digestion allowed mitigate ammonia inhibition based on the mechanism of proton pump, facilitate intercellularly ammonia accumulation, stimulate syntrophic consortia, and eliminate uncertainty of process failure, which resulted in efficient methane production under ammonia stress.
               
Click one of the above tabs to view related content.