LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient biosynthesis of exopolysaccharide from Jerusalem artichoke using a novel strain of Bacillus velezensis LT-2.

Photo by house_42 from unsplash

This study focused on the non-grain biorefining of Jerusalem artichoke (JA) for exopolysaccharide (EPS) efficient production by using Bacillus velezensis LT-2. Results showed that LT-2 could directly utilize JA tuber… Click to show full abstract

This study focused on the non-grain biorefining of Jerusalem artichoke (JA) for exopolysaccharide (EPS) efficient production by using Bacillus velezensis LT-2. Results showed that LT-2 could directly utilize JA tuber power (JATP) for EPS production, and its EPS yield reached 11.47 ± 0.33 g/L in the simultaneous saccharification and fermentation (SSF) mode. Furthermore, the SSF mode shortened the fermentation period by 26.67% and reduced the fermentation cost by 79.41% due to the improved substrate utilization and the avoidance of inhibition effects of a high fructose concentration. Transcriptome sequencing results showed that inulin could accelerate nucleotide-sugars biosynthesis, induce EPS synthetic gene cluster transcription, and strengthen the electron transport respiratory chain and the transporter systems, thereby ensuring EPS efficient synthesis. This work exhibited a productive non-grain and environmentally friendly fermentation strategy for EPS biosynthesis, which promoted the JA industry development and created new prospects for high-value industrial products biosynthesis by using JATP.

Keywords: jerusalem artichoke; biosynthesis; fermentation; bacillus velezensis

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.