LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Immobilization altering the growth behavior, ammonium uptake and amino acid synthesis of Chlorella vulgaris at different concentrations of carbon and nitrogen.

Photo from wikipedia

Nitrogen recycling by microalgae has aroused considerable attention. In this study, immobilized Chlorellavulgaris with 5-day mixotrophic cultivation to recover ammonium (NH4+-N) were systematically investigated under various sodium acetate (CH3COONa) and… Click to show full abstract

Nitrogen recycling by microalgae has aroused considerable attention. In this study, immobilized Chlorellavulgaris with 5-day mixotrophic cultivation to recover ammonium (NH4+-N) were systematically investigated under various sodium acetate (CH3COONa) and ammonium chloride (NH4Cl) concentrations, and evaluated by comparison with suspended cells. The results revealed that, unlike suspended cells, NH4+-N uptake by immobilized cells was not in direct proportion to chemical oxygen demand (COD) concentrations. The immobilized cells to NH4+-N uptake was all inferior to that of suspended cells, presenting the maximum rate of 68.92% in group of 30 mg/L NH4+-N and 200 mg/L COD. Free amino acids in immobilized cells such as glutamate (Glu), arginine (Arg), proline (Pro) and leucine (Leu) were more sensitive to NH4+-N assimilation, as higher values observed by suspended cells. Low carbon-nitrogen (C/N) ratio showed remarkable benefits to amino acid synthesis. These results could provide a reference for manipulating the algal system and biomass accumulation.

Keywords: amino acid; suspended cells; acid synthesis; carbon nitrogen; ammonium

Journal Title: Bioresource technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.