LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon-based conductive materials accelerated methane production in anaerobic digestion of waste fat, oil and grease.

Photo from wikipedia

Little is known about the effect of carbon-based conductive material (CM) addition on the anaerobic co-digestion of fat, oil and grease (FOG) and waste activated sludge (WAS). In this study,… Click to show full abstract

Little is known about the effect of carbon-based conductive material (CM) addition on the anaerobic co-digestion of fat, oil and grease (FOG) and waste activated sludge (WAS). In this study, three types of carbon-based CMs (nano-graphite (NG), granular activated carbon (GAC), and carbon cloth (CC)) and nine dosages were evaluated for their influences on co-digestion performance. The best dosage was achieved at 0.2 g/L NG, 10 g/L GAC, and 1 cm × 5 cm CC with 13-22% incremental methane production, 25-55% increased VS removal and 28-32% enhanced COD conversion efficiency compared to the control. The highest total amount of bacteria/archaea was found in CC (1 cm × 5 cm), followed by GAC at 10 g/L and NG at 0.2 g/L, which were all higher than those of the control. Microbial community analysis revealed that direct interspecies electron transfer (DIET)-mediated syntrophic acetate oxidation (SAO) enabling faster acetate conversion might be responsible for the enhancement of methane production.

Keywords: based conductive; carbon; methane production; digestion; carbon based

Journal Title: Bioresource technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.