LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple electron acceptor-mediated sulfur autotrophic denitrification: Nitrogen source competition, long-term performance and microbial community evolution.

Photo from wikipedia

Sulfur-driven autotrophic denitrification (SDAD) is feasible for the treatment of low-C/N-ratio and sulfur-laden wastewaters. The nitrite accumulated in SDAD will affect the performance and stability of the system but can… Click to show full abstract

Sulfur-driven autotrophic denitrification (SDAD) is feasible for the treatment of low-C/N-ratio and sulfur-laden wastewaters. The nitrite accumulated in SDAD will affect the performance and stability of the system but can be a potential electron acceptor. Thus, single- and multiple-electron acceptor-mediated SDAD systems were investigated. Batch assays revealed that nitrite and nitrate were the preferential options in the SDAD system with single and multiple electron acceptors, respectively. Synchronous nitrogen and sulfur removal was successfully achieved in continuous flow experiments with multiple electron acceptors, and the system could adapt well to high concentrations of sulfide, nitrate and nitrite (i.e., 720, 108 and 64.8 mg L-1, respectively), with the predominant genera shifting from Thiobacillus (48.88%) at the initial stage to unclassified_p_Firmicute (34.24%) and Syner-01 (12.31%) at the last stage. This work provides a fundamental basis for applying and regulating SDAD with multiple electron acceptors for the remediation of nitrogen- and sulfide- laden wastewaters.

Keywords: acceptor mediated; autotrophic denitrification; electron acceptor; multiple electron; electron

Journal Title: Bioresource technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.