One of the major limitations of lignocellulose conversion is the relatively low efficiency of cellulases. Expansins can act as an accessory protein to loosen the rigid cellulose structure and promote… Click to show full abstract
One of the major limitations of lignocellulose conversion is the relatively low efficiency of cellulases. Expansins can act as an accessory protein to loosen the rigid cellulose structure and promote cellulose hydrolysis. However, the synergistic action of expansin is not well understood. In this study, we employed quartz crystal microbalance with dissipation to real-time monitor the adsorption of Bacillus subtilis expansin (BsEXLX1) and endoglucanase I (Cel7B) and the hydrolysis of cellulose. The effects of pH, temperature, and zinc ions on the initial adsorption rate and adsorption capacity of BsEXLX1 were examined. When 36.5 mM of zinc ions was added, the irreversible adsorption ratio of BsEXLX1 further increased to 4.63 times the value in the absence of zinc ions, whereas the initial adsorption rate and the hydrolysis rate constants of Cel7B could reach 2.16 times and 2.05 times the values in the absence of zinc ions, respectively.
               
Click one of the above tabs to view related content.