This study aimed to evaluate the functionality of bioactive terpenes on Spirulina (Arthrospira platensis; AP) and Chlorella (Chlorella vulgaris; CV) biomasses. The two microalgae species were treated with 0.01%, 0.05%,… Click to show full abstract
This study aimed to evaluate the functionality of bioactive terpenes on Spirulina (Arthrospira platensis; AP) and Chlorella (Chlorella vulgaris; CV) biomasses. The two microalgae species were treated with 0.01%, 0.05%, and 0.1% of thymol (THY), trans-cinnamaldehyde (TC), menthol (MEN), and vanillin (VAN). Raman micro-spectroscopy (RMS) was correlated with other physicochemical methods to confirm their functional mechanisms. In results, THY (0.1%) decreased (P < 0.05) RMS intensity at 1196 cm-1 that represents the protein's secondary amines wavenumber. Also, VAN (0.1%) decreased significantly A. platensis α-helix to 16.60 ± 0.52% compared to the control with 19.83 ± 0.32%. While, 0.1% TC increased (P < 0.05) the viscosity to 2.52 ± 0.61 Pa.s. This work demonstrated that terpenes could differently affect the physicochemical structure of microalgae biomass. The RMS's uniqueness comes from its ability to evaluate the functionality of terpenes during microalgae cultivation. Besides, chemometrics led to focus on the most important variances.
               
Click one of the above tabs to view related content.