Waste biomass of Lactobacillus brevis obtained from in vivo γ-aminobutyric acid (GABA) production was used for value-addition. This study aims to extract glutamate decarboxylase (GAD) and characterize it for in… Click to show full abstract
Waste biomass of Lactobacillus brevis obtained from in vivo γ-aminobutyric acid (GABA) production was used for value-addition. This study aims to extract glutamate decarboxylase (GAD) and characterize it for in vitro GABA production. Extracted GAD showed an excellent activity for in vitro GABA production. 52 W ultrasonic output was best in crude GAD extraction which was purified by Q HP anion-exchange column followed by Superdex-200 colloid separation column. The molecular weight of the purified GAD was determined to be ~53 kDa, and the Km value for L-glutamic acid was calculated ~7.65 mM. Pyridoxal 5'-phosphate (PLP) acted as the best cofactor for GAD. Optimum temperature and PLP dosing were deferring for crude and purified enzyme forms which respectively exhibited at 45°C, 55°C, 200 µmol and 20 µmol whereas optimum pH was the same at 4.5. GAD finds applications in food industries hence its detailed characterization would be promising for commercial exploitations.
               
Click one of the above tabs to view related content.