LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lignin-based adsorbent-catalyst with high capacity and stability for polychlorinated aromatics removal.

Photo from wikipedia

The utilization of lignin as carbonaceous material for pollution adsorption provides an alternative way for lignocellulose valorization. Here in, lignin-based adsorbents (i.e., LC-A, LC-B, and LC-C) were prepared and used… Click to show full abstract

The utilization of lignin as carbonaceous material for pollution adsorption provides an alternative way for lignocellulose valorization. Here in, lignin-based adsorbents (i.e., LC-A, LC-B, and LC-C) were prepared and used for the removal of o-DCB (a toxic gaseous pollutant). LC-B exhibited the best adsorption capacity (718.2 mg/g) when comparing with LC-A (93.1 mg/g), LC-C (10.2 mg/g), and activated carbon (72.7 mg/g). LC-B also demonstrated excellent recycling stability with the adsorption capacity of 710.8 mg/g after five runs. More importantly, LC-B supported Ru adsorbent catalyst could effectively remove o-DCB with removal rate >80% under a wide range of temperature (50-300°C). The excellent performance of lignin-based adsorbents could be attributed to its abundant pore structure, high specific surface area (1618.55 m2/g), enhanced graphitization degree as well as the abundant hydroxyl functional groups. The present work provided a cost-effective strategy for pollution control by lignin-based material.

Keywords: lignin based; capacity; lignin; adsorbent catalyst; stability

Journal Title: Bioresource technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.