LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flue gas torrefaction of distilled spirit lees and the effects on the combustion and nitrogen oxide emission.

Photo from wikipedia

Flue gas torrefaction (FGT) integrated with combustion was introduced for the clean treatment of distilled spirit lees (DSL). The effects of temperature, residence time, and volumetric flow rate of FGTs… Click to show full abstract

Flue gas torrefaction (FGT) integrated with combustion was introduced for the clean treatment of distilled spirit lees (DSL). The effects of temperature, residence time, and volumetric flow rate of FGTs were investigated. The improvement in the physicochemical and combustion characteristics of the torrefied DSL and the reaction mechanisms were clarified by a tube furnace and the TG-MS device. The results showed that FGT could effectively improve the properties of DSL. With increasing temperature, residence time, and volumetric flow rate, the mass and energy yields decreased. FGT showed positive effects on the removal of free and bonding water, as well as the enrichment of lignin. FGT effectively inhibited the release of NOx. The overall emission of NOx was reduced by 57.3%. Additionally, the cost of DSL drying and denitrification could be greatly reduced by FGT. This study provided a practical treatment for DSL and new insight into FGT.

Keywords: flue gas; combustion; gas torrefaction; distilled spirit; fgt; spirit lees

Journal Title: Bioresource technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.