LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-pot synthesis of Ca-based magnetic hydrochar derived from consecutive hydrothermal and pyrolysis processing of bamboo for high-performance scavenging of Pb(Ⅱ) and tetracycline from water.

Photo from wikipedia

Ca-based magnetic bamboo-derived hydrochar described as Ca-MBHC was synthesized by one-pot pyrolysis, and was applied to remediation of lead (Pb) and tetracycline (TC) polluted water. Characterizations not only attested the… Click to show full abstract

Ca-based magnetic bamboo-derived hydrochar described as Ca-MBHC was synthesized by one-pot pyrolysis, and was applied to remediation of lead (Pb) and tetracycline (TC) polluted water. Characterizations not only attested the loading of CaCO3 and Fe0 onto the hydrochar, but also demonstrated the magnetism of Ca-MBHC. Adsorption kinetic experiments showed that the Ca-MBHC could eliminate Pb(II) and TC during a wide range of pH, and appeared rapid uptake equilibrium within 240 and 60 min for Pb(II) and TC, severally. Adsorption isotherm experiments showed that the Ca-MBHC possessed highest adsorption of 475.58 mg/g concerning Pb(II), and heterogeneous uptake of 142.44 mg/g for TC. Furthermore, the Ca-MBHC could achieve Pb(II) binding owing to complexation, reduction, ion exchange and electrostatic attraction, whereas the TC uptake might be related to π-π stacking reciprocities, pore filling and hydrogen bonding. Overall, the Ca-MBHC could be viewed as an excellent adsorbent for scavenging Pb(II) and tetracycline from water.

Keywords: based magnetic; scavenging tetracycline; water; one pot; tetracycline water

Journal Title: Bioresource technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.