Organosolv pretreatment can be considered as the core of the lignocellulosic biomass fractionation within the biorefinery concept. Organosolv facilitates the separation of the major fractions (cellulose, hemicelluloses, lignin), and their… Click to show full abstract
Organosolv pretreatment can be considered as the core of the lignocellulosic biomass fractionation within the biorefinery concept. Organosolv facilitates the separation of the major fractions (cellulose, hemicelluloses, lignin), and their use as renewable feedstocks to produce bioenergy, biofuels, and added-value biomass derived chemicals. The efficient separation of these fractions affects the economic feasibility of the biorefinery complex. This review focuses on the simulation of the organosolv pretreatment and the optimization of (i) feedstock delignification, (ii) sugars production (mainly from hemicelluloses), (iii) enzymatic digestibility of the cellulose fraction and (iv) quality of lignin. Simulation is used for the technoeconomic optimization of the biorefinery complex. Simulation and optimization implement a holistic approach considering the efficient technological, economic, and environmental performance of the biorefinery operational units. Consequently, an optimized organosolv stage is the first step for a sustainable, economically viable biorefinery complex in the concept of industrial ecology and zero waste circular economy.
               
Click one of the above tabs to view related content.