LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aquaculture waste nutrients removal using microalgae with floating permeable nutrient uptake system (FPNUS).

Photo from wikipedia

Large area requirements and huge energy consumption restrict the applications of microalgae in wastewater treatment. In this study, in-situ nutrient removal was tested using a floating permeable nutrients uptake system… Click to show full abstract

Large area requirements and huge energy consumption restrict the applications of microalgae in wastewater treatment. In this study, in-situ nutrient removal was tested using a floating permeable nutrients uptake system with pore sizes of 1, 5, 10, and 40 µm, and Chlorella sorokiniana and Scenedesmus acuminatus. Results showed that N transfer rate across FPNUS varied with membrane pore size and N-type. Average transfer rate of NH4+-N, NO3--N, and NO2--N across 1 µm membrane was 2.6, 14.6, and 2.3 mg m-2h-1, respectively, sufficient to support microalgal growth. The NH4+-N and NO3--N removal rate in shrimp wastewater reached 1.32 and 1.88 mg L-1d-1, comparable to some BNR processes used in RAS. According to the developed area ratio prediction model, FPNUS to pond area ratio of 21% is sufficient to balance N loading of 0.05 mg L-1d-1. These results indicate extraordinary potential of in-situ nutrient removal from wastewaters using FPNUS.

Keywords: aquaculture waste; waste nutrients; floating permeable; uptake system; nutrients removal

Journal Title: Bioresource technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.