LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mathematical modeling of dark fermentation of macroalgae for hydrogen and volatile fatty acids production.

Photo from wikipedia

A mathematical model of H2 and volatile fatty acids (VFAs) production via dark fermentation of particulate macroalgal substrates is presented. Carbohydrates, proteins, and lipids in the particulate substrate are convert… Click to show full abstract

A mathematical model of H2 and volatile fatty acids (VFAs) production via dark fermentation of particulate macroalgal substrates is presented. Carbohydrates, proteins, and lipids in the particulate substrate are convert to H2, CO2, and VFAs via disintegration/solubilization, hydrolysis, and acidogenesis. Hydrolysis is modeled using a combined surface-limiting model combined with a first-order reaction model to describe both microbial hydrolysis and physical solubilization. Experimental and published data obtained using Saccharina japonica as the substrate are used to calibrate and validate the model. The model prediction featured a good accuracy, with high R2 of 0.912 - 0.976 for all end products. The physical solubilisation accounts for 28.4% of the total hydrolysis. By the model simulation, a H2 production of 103.2 mL/g-VS and VFA production of 0.41 g/g-VS are found at optimum conditions of 20 g-TS/L (13.2 g-VS/L) of substrate concentration and 7.0 of initial pH.

Keywords: volatile fatty; dark fermentation; production; model; fatty acids

Journal Title: Bioresource technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.