LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genome-wide DNA methylation profiling of hip articular cartilage identifies differentially methylated loci associated with osteonecrosis of the femoral head.

Photo from wikipedia

OBJECTIVE Recent studies demonstrated a critical role of hip articular cartilage destruction in the development of osteonecrosis of the femoral head (ONFH). The aim of this study was to characterize… Click to show full abstract

OBJECTIVE Recent studies demonstrated a critical role of hip articular cartilage destruction in the development of osteonecrosis of the femoral head (ONFH). The aim of this study was to characterize the genome-wide DNA methylation profile of hip cartilage obtained from patients with ONFH and healthy subjects. METHODS Hip articular cartilage specimens were collected from 15 ONFH patients (including 11 males and 4 females) and 15 control subjects (including 11 males and 4 females) with femoral neck fracture. The average ages of the ONFH patients and control subjects were 50.27 ± 5.27 years and 61.67 ± 3.38 years, respectively. Genome-wide DNA methylation profiles of 5 ONFH and 5 control cartilages were determined by Illumina HumanMethylation850 array. Differential methylation analysis of DNA methylation profiles were performed by the empirical Bayes moderated t-test of the limma package. Mass spectrograph (MS) analysis of 10 ONFH cartilages and 10 normal cartilages were performed to validate the results of genome-wide DNA methylation profiling. Immunohistochemistry (IHC) of 4 ONFH cartilages and 4 control cartilages were conducted to evaluate the expression levels of proteins encoded by identified differentially methylated genes. t-test was used to assess the significance of protein expression differences between ONFH patients and controls in IHC. RESULTS We identified a total of 2872 differentially methylated CpG sites, annotated to 480 hypermethylated genes and 1335 hypomethylated genes for ONFH. The results of MS validation were consistent with that of genome-wide DNA methylation profiling. IHC further confirmed the increased protein expression of CARS (mean and 95%CI of superficial zone 59.67% [48.46, 56.14], and deep zone 31% [25.85, 30.61]), PDE4D (superficial zone 50.33% [33.64, 40.68] and deep zone 28.67% [10.81, 36.47]), ADAMTS12 (superficial zone 53.67% [36.01, 40.93] and deep zone 34.67% [22.56, 37.18]), LRP5 (superficial zone 59.63% [27.32, 39.61] and deep zone 22.95% [5.28, 19.29]), RUNX2 (superficial zone 52.58% [11.64, 31.33] and deep zone 35.01% [10.03, 27.44]) in ONFH articular cartilage. CONCLUSION Our results suggest the implication of DNA methylation alterations in the development of ONFH, and provide novel clues for pathogenetic and therapeutic studies of ONFH.

Keywords: genome wide; methylation; zone; wide dna; dna methylation

Journal Title: Bone
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.