LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamical regimes of lipids in additivated liposomes with enhanced elasticity: A field-cycling NMR relaxometry approach.

Photo by vaccinium from unsplash

We study the molecular dynamics of lipids in binary large unilamellar liposomes suspended in D2O composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or soy phosphatidylcholine (SPC) additivated with different percentiles of sodium deoxycholate… Click to show full abstract

We study the molecular dynamics of lipids in binary large unilamellar liposomes suspended in D2O composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or soy phosphatidylcholine (SPC) additivated with different percentiles of sodium deoxycholate (SDC). We use the fast field-cycling proton NMR relaxometry technique over a wide timescale and at diverse temperatures. A model previously validated in different formulations is here employed for the relaxometric analysis of elastic vesicles. A new dynamical regime is observed for the first time in additivated DMPC and additivated/non-additivated SPC liposomes. This surprising feature is discussed in terms of vesicle shape fluctuations, enhanced elasticity and lipid & additive diffusion within the membrane. The continuum elastic theory is revisited for a better understanding of recent experiments and those here presented. We address the point of deformability measurements across rigid permeable barriers versus measurements of the bending elastic modulus in free-standing vesicles.

Keywords: field cycling; nmr relaxometry; enhanced elasticity

Journal Title: Biophysical chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.