Living organisms can be encountered in nature under extreme conditions. At the seabed, pressure may reach 1000 bar. Yet microorganisms can be found that still function under these conditions. On the… Click to show full abstract
Living organisms can be encountered in nature under extreme conditions. At the seabed, pressure may reach 1000 bar. Yet microorganisms can be found that still function under these conditions. On the one hand, it is known that high pressure even has a positive effect on piezophile enzymes increasing their activity. On the other hand, such microorganisms might contain up to very high concentrations of osmolytes that counteract osmotic stress. To better understand high-pressure influences on biochemical systems, fundamental knowledge about pressure effects on thermodynamic properties of such osmolytes is important. However, literature data is scarce and experiments at high-pressure conditions are challenging. Hence, new high-pressure density data of aqueous osmolyte solutions were measured in this work at temperatures between 298.15 K and 318.15 K and at osmolyte concentrations up to 3 mol/kg water. Further, the thermodynamic model PC-SAFT has been applied recently to successfully model vapor pressures of water and density of water up to 10 kbar [M. Knierbein et al., Density variations of TMAO solutions in the kilobar range: experiments, PC-SAFT predictions, and molecular dynamics simulations, Biophysical chemistry, (2019)]. This allowed accurately predicting effects of temperature and osmolyte concentration on thermodynamic properties (especially mixture densities) up to very high pressures. Common osmolytes (trimethylamine-N-oxide, urea, ectoine, glycerol, glycine) as well as the dipeptides acetyl-N-methylglycine amide, acetyl-N-methylalanine amide, and acetyl-N-methylleucine amide were under investigation.
               
Click one of the above tabs to view related content.