LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous multisite detection of quantal release from PC12 cells using micro graphitic-diamond multi electrode arrays.

Photo by julee_juu from unsplash

Micro graphitic - diamond - multi electrode arrays (μG-D-MEAs) are suitable for measuring multisite quantal dopamine (DA) release from PC12 cells. Following cell stimulation with high extracellular KCl and electrode… Click to show full abstract

Micro graphitic - diamond - multi electrode arrays (μG-D-MEAs) are suitable for measuring multisite quantal dopamine (DA) release from PC12 cells. Following cell stimulation with high extracellular KCl and electrode polarization at +650 mV, amperometric spikes are detected with a mean frequency of 0.60 ± 0.16 Hz. In each recording, simultaneous detection of secretory events is occurred in approximately 50% of the electrodes. Kinetic spike parameters and background noise are preserved among the different electrodes. Comparing the amperometric spikes recorder under control conditions with those recorders from PC12 cells previously incubated for 30 min with the dopamine precursor Levodopa (L-DOPA, 20 μM) it appears that the quantal size of amperometric spikes is increased by 250% and the half-time width (t1/2) by over 120%. On the contrary, L-DOPA has no effect on the frequency of secretory events. Overall, these data demonstrate that the μG-D-MEAs represent a reliable bio-sensor to simultaneously monitor quantal exocytotic events from different cells and in perspective can be exploited as a drug-screening tool.

Keywords: graphitic diamond; diamond multi; pc12 cells; micro graphitic; multi electrode; electrode

Journal Title: Biophysical chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.