LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

pH dependence of C•A, G•A and A•A mismatches in the stem of precursor microRNA-31.

Photo by dorne_marting from unsplash

MicroRNAs (miRNAs) are important regulators of post-transcriptional gene expression. Mature miRNAs are generated from longer transcripts (primary, pri- and precursor, pre-miRNAs) through a series of highly coordinated enzymatic processing steps.… Click to show full abstract

MicroRNAs (miRNAs) are important regulators of post-transcriptional gene expression. Mature miRNAs are generated from longer transcripts (primary, pri- and precursor, pre-miRNAs) through a series of highly coordinated enzymatic processing steps. The sequence and structure of these pri- and pre-miRNAs play important roles in controlling their processing. Both pri- and pre-miRNAs adopt hairpin structures with imperfect base pairing in the helical stem. Here, we investigated the role of three base pair mismatches (A∙A, G∙A, and C∙A) present in pre-miRNA-31. Using a combination of NMR spectroscopy and thermal denaturation, we found that nucleotides within the three base pair mismatches displayed unique structural properties, including varying dynamics and sensitivity to solution pH. These studies deepen our understanding of how the physical and chemical properties of base pair mismatches influence RNA structural stability.

Keywords: mismatches stem; pre; dependence mismatches; base pair; pair mismatches; pre mirnas

Journal Title: Biophysical chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.