LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamic Bounds on the Ultra- and Infra-affinity of Hsp70 for Its Substrates.

Photo by gbodin from unsplash

The 70 kDa heat shock protein Hsp70 has several essential functions in living systems, such as protecting cells against protein aggregation, assisting protein folding, remodeling protein complexes, and driving translocation into… Click to show full abstract

The 70 kDa heat shock protein Hsp70 has several essential functions in living systems, such as protecting cells against protein aggregation, assisting protein folding, remodeling protein complexes, and driving translocation into organelles. These functions require high affinity for nonspecific amino acid sequences that are ubiquitous in proteins. It has been recently shown that this high affinity, called ultra-affinity, depends on a process driven out of equilibrium by ATP hydrolysis. Here, we establish the thermodynamic bounds for ultra-affinity, and further show that the same reaction scheme can in principle be used both to strengthen and to weaken affinities (leading in this case to infra-affinity). We show that cofactors are essential to achieve affinity beyond the equilibrium range. Finally, biological implications are discussed.

Keywords: affinity; affinity hsp70; ultra infra; thermodynamic bounds; infra affinity; bounds ultra

Journal Title: Biophysical journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.