Kv11.1 (hERG) is a voltage-gated potassium channel that shows very slow ionic current activation kinetics, and an unusual underlying biphasic gating charge movement with fast and slow components that differ… Click to show full abstract
Kv11.1 (hERG) is a voltage-gated potassium channel that shows very slow ionic current activation kinetics, and an unusual underlying biphasic gating charge movement with fast and slow components that differ greatly in time course. The structural basis and role of the fast component of gating charge (Qfast) is unclear, and its relationship to the slow activation of hERG channels is not understood. In this study we have used the cut-open oocyte voltage-clamp technique to investigate the relationship of fast gating charge movement-to-residue interactions between D411 at the bottom of the S1, and lower S4 domain charged and uncharged residues. Neutralization of D411 or K538 and V535A prevented Qfast and greatly accelerated overall charge movement. Voltage-clamp fluorometry showed a loss of a fast component of S4 fluorescence in D411N, V535A, and K538Q upon depolarization, whereas [2-(trimethyl ammonium) ethyl] methanethiosulfonate chloride modification of I521C in the outer S4 was enhanced at more negative potentials and at earlier times in these same mutants. A functional interaction between these regions during activation was suggested by ΔΔGo values >4.2 kJ/mol obtained from double mutant cycle analysis. The data indicate that interactions of S1 residue D411 with lower S4 residues stabilizes early closed states of the channel, and that disruption of these interactions results in both faster rates of activation gating and an elimination of the fast component of gating charge movement and of fluorescence. We propose that the Qfast charge movement during activation accompanies transitions through early closed states of the hERG activation pathway, and that the weak voltage dependence of these transitions limits the overall activation rate of hERG channels. Disruption of the D411-S4 interactions destabilizes these early closed states, leaving hERG channels able to activate at a rate similar to conventional potassium channels.
               
Click one of the above tabs to view related content.