LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Context-Dependent Energetics of Loop Extensions in a Family of Tandem-Repeat Proteins

Photo from academic.microsoft.com

Consensus-designed tetratricopeptide repeat proteins are highly stable, modular proteins that are strikingly amenable to rational engineering. They therefore have tremendous potential as building blocks for biomaterials and biomedicine. Here, we… Click to show full abstract

Consensus-designed tetratricopeptide repeat proteins are highly stable, modular proteins that are strikingly amenable to rational engineering. They therefore have tremendous potential as building blocks for biomaterials and biomedicine. Here, we explore the possibility of extending the loops between repeats to enable further diversification, and we investigate how this modification affects stability and folding cooperativity. We find that extending a single loop by up to 25 residues does not disrupt the overall protein structure, but, strikingly, the effect on stability is highly context-dependent: in a two-repeat array, destabilization is relatively small and can be accounted for purely in entropic terms, whereas extending a loop in the middle of a large array is much more costly because of weakening of the interaction between the repeats. Our findings provide important and, to our knowledge, new insights that increase our understanding of the structure, folding, and function of natural repeat proteins and the design of artificial repeat proteins in biotechnology.

Keywords: repeat proteins; energetics loop; repeat; dependent energetics; context dependent; loop extensions

Journal Title: Biophysical Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.